Development of a decerebrate model for investigating mechanisms mediating viscero-sympathetic reflexes in the spinalized rat

Author:

Reynolds Christian A.12,O’Leary Donal S.23,Ly Cheng4,Smith Scott A.56,Minic Zeljka12ORCID

Affiliation:

1. Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan

2. Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan

3. Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan

4. Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia

5. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas

6. Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas

Abstract

Autonomic dysreflexia (AD) often occurs in individuals living with spinal cord injury (SCI) and is characterized by uncontrolled hypertension in response to otherwise innocuous stimuli originating below the level of the spinal lesion. Visceral stimulation is a predominant cause of AD in humans and effectively replicates the phenotype in rodent models of SCI. Direct assessment of sympathetic responses to viscerosensory stimulation in spinalized animals is challenging and requires invasive surgical procedures necessitating the use of anesthesia. However, administration of anesthesia markedly affects viscerosensory reactivity, and the effects are exacerbated following spinal cord injury (SCI). Therefore, the major goal of the present study was to develop a decerebrate rodent preparation to facilitate quantification of sympathetic responses to visceral stimulation in the spinalized rat. Such a preparation enables the confounding effect of anesthesia to be eliminated. Sprague-Dawley rats were subjected to SCI at the fourth thoracic segment. Four weeks later, renal sympathetic nerve activity (RSNA) responses to visceral stimuli were quantified in urethane/chloralose-anesthetized and decerebrate preparations. Visceral stimulation was elicited via colorectal distension (CRD) for 1 min. In the decerebrate preparation, CRD produced dose-dependent increases in mean arterial pressure (MAP) and RSNA and dose-dependent decreases in heart rate (HR). These responses were significantly greater in magnitude among decerebrate animals when compared with urethane/chloralose-anesthetized controls and were markedly attenuated by the administration of urethane/chloralose anesthesia after decerebration. We conclude that the decerebrate preparation enables high-fidelity quantification of neuronal reactivity to visceral stimulation in spinalized rats. NEW & NOTEWORTHY In animal models commonly used to study spinal cord injury, quantification of sympathetic responses is particularly challenging due to the increased susceptibility of spinal reflex circuits to the anesthetic agents generally required for experimentation. This constitutes a major limitation to understanding the mechanisms mediating regionally specific neuronal responses to visceral activation in chronically spinalized animals. In the present study, we describe a spinalized, decerebrate rodent preparation that facilitates quantification of sympathetic reactivity in response to visceral stimuli following spinal cord injury. This preparation enables reliable and reproducible quantification of viscero-sympathetic reflex responses resembling those elicited in conscious animals and may provide added utility for preclinical evaluation of neuropharmacological agents for the management of autonomic dysreflexia.

Funder

Munuswamy Dayanandan Endowement-WSU Department of Emergency Medicine

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3