Multilayer flow modulator enhances vital organ perfusion in patients with type B aortic dissection

Author:

Rikhtegar Nezami Farhad1ORCID,Athanasiou Lambros S.12,Amrute Junedh M.13,Edelman Elazer R.12

Affiliation:

1. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

2. Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts

3. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California

Abstract

Management of aortic dissections (AD) is still challenging, with no universally approved guideline among possible surgical, endovascular, or medical therapies. Approximately 25% of patients with AD suffer postintervention malperfusion syndrome or hemodynamic instability, with the risk of sudden death if left untreated. Part of the issue is that vascular implants may themselves induce flow disturbances that critically impact vital organs. A multilayer mesh construct might obviate the induced flow disturbances, and it is this concept we investigated. We used preintervention and post-multilayer flow modulator implantation (PM) geometries from clinical cases of type B AD. In-house semiautomatic segmentation routines were applied to computed tomography images to reconstruct the lumen. The device was numerically reconstructed and adapted to the PM geometry concentrically fit to the true lumen centerline. We also numerically designed a pseudohealthy case, where the geometry of the aorta was extracted interpolating geometric features of preintervention, postimplantation, and published representative healthy volunteers. Computational fluid dynamics methods were used to study the time-dependent flow patterns, shear stress metrics, and perfusion to vital organs. A three-element Windkessel lumped parameter module was coupled to a finite-volume solver to assign dynamic outlet boundary conditions. Multilayer flow modulator not only significantly reduced false lumen blood flow, eliminated local flow disturbances, and globally regulated wall shear stress distribution but also maintained physiological perfusion to peripheral vital organs. We propose further investigation to focus the management of AD on both modulation of blood flow and restoration of physiologic end-organ perfusion rather than mere restoration of vascular lamina morphology. NEW & NOTEWORTHY The majority of aortic dissection modeling efforts have focused on the maintenance of physiological flow using minimally invasive placed grafts. The multilayer flow modulator is a complex mesh construct of wires, designed to eliminate flow disruptions in the lumen, regulate the physiological wall stresses, and enhance endothelial function and offering the promise of improved perfusion of vital organs. This has never been fully proved or modeled, and these issues we confirmed using a dynamic framework of time-varying arterial waveforms.

Funder

The National Institute of Health (NIH), United States

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3