Paradoxical hypotension following increased hematocrit and blood viscosity

Author:

Martini Judith,Carpentier Benoît,Negrete Adolfo Chávez,Frangos John A.,Intaglietta Marcos

Abstract

Hematocrit (Hct) of awake hamsters and CD-1 mice was acutely increased by isovolemic exchange transfusion of packed red blood cells (RBCs) to assess the relation between Hct and blood pressure. Increasing Hct 7–13% of baseline decreased mean arterial blood pressure (MAP) by 13 mmHg. Increasing Hct above 19% reversed this trend and caused MAP to rise above baseline. This relationship is described by a parabolic function ( R2 = 0.57 and P < 0.05). Hamsters pretreated with the nitric oxide (NO) synthase (NOS) inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) and endothelial NOS-deficient mice showed no change in MAP when Hct was increased by <19%. Nitrate/nitrite plasma levels of Hct-augmented hamsters increased relative to control and l-NAME treated animals. The blood pressure effect was stable 2 h after exchange transfusion. These findings suggest that increasing Hct increases blood viscosity, shear stress, and NO production, leading to vasodilation and mild hypotension. This was corroborated by measuring A1 arteriolar diameters (55.0 ± 21.5 μm) and blood flow in the hamster window chamber preparation, which showed statistically significant increased vessel diameter (1.04 ± 0.1 relative to baseline) and microcirculatory blood flow (1.39 ± 0.68 relative to baseline) after exchange transfusion with packed RBCs. Larger increases of Hct (>19% of baseline) led blood viscosity to increase >50%, overwhelming the NO effect through a significant viscosity-dependent increase in vascular resistance, causing MAP to rise above baseline values.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference37 articles.

1. Pulmonary nitric oxide in mountain dwellers

2. Hemodilution Reduces Clinic and Ambulatory Blood Pressure in Polycythemic Patients

3. Quantitation of rhythmic diameter changes in arterial microcirculation

4. Flow-mediated endothelial mechanotransduction

5. De Simone G, Devereux RB, Chinali M, Best LG, Lee ET, and Welty TK. Association of blood pressure with blood viscosity in American Indians: The strong heart study. Hypertension 4: 625–630, 2005.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3