Effect of modulating cardiac A1adenosine receptor expression on protection with ischemic preconditioning

Author:

Lankford Amy R.,Yang Jiang-Ning,Rose'Meyer Roselyn,French Brent A.,Matherne G. Paul,Fredholm Bertil B.,Yang Zequan

Abstract

Activation of A1adenosine receptors (A1ARs) may be a crucial step in protection against myocardial ischemia-reperfusion (I/R) injury; however, the use of pharmacological A1AR antagonists to inhibit myocardial protection has yielded inconclusive results. In the current study, we have used mice with genetically modified A1AR expression to define the role of A1AR in intrinsic protection and ischemic preconditioning (IPC) against I/R injury. Normal wild-type (WT) mice, knockout mice with deleted (A1KO−/−) or single-copy (A1KO+/−) A1AR, and transgenic mice (A1TG) with increased cardiac A1AR expression underwent 45 min of left anterior descending coronary artery occlusion, followed by 60 min of reperfusion. Subsets of each group were preconditioned with short durations of ischemia (3 cycles of 5 min of occlusion and 5 min of reperfusion) before index ischemia. Infarct size (IF) in WT, A1KO+/−, and A1KO−/−mice was (in % of risk region) 58 ± 3, 60 ± 4, and 61 ± 2, respectively, and was less in A1TG mice (39 ± 4, P < 0.05). A strong correlation was observed between A1AR expression level and response to IPC. IF was significantly reduced by IPC in WT mice (35 ± 3, P < 0.05 vs. WT), A1KO+/−+ IPC (48 ± 4, P < 0.05 vs. A1KO+/−), and A1TG + IPC mice (24 ± 2, P < 0.05 vs. A1TG). However, IPC did not decrease IF in A1KO−/−+ IPC mice (63 ± 2). In addition, A1KO−/−hearts subjected to global I/R injury demonstrated diminished recovery of developed pressure and diastolic function compared with WT controls. These findings demonstrate that A1ARs are critical for protection from myocardial I/R injury and that cardioprotection with IPC is relative to the level of A1AR gene expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3