Author:
Guevara M. R.,Shrier A.,Glass L.
Abstract
The influence of isolated 20-ms duration current pulses on the spontaneous rhythm of embryonic chick ventricular heart cell aggregates was studied. A pulse could either delay or advance the time of occurrence of the next action potential, depending on whether it fell early or late in the cycle. As the stimulus amplitude was increased, the transition from delay to advance occurred over a narrower range of coupling intervals. At low-stimulus amplitudes the transition from delay to advance occurred in a smooth continuous fashion; at medium-stimulus amplitudes the transition was discontinuous; at high-stimulus amplitudes graded action potentials were seen. It was impossible to annihilate spontaneous activity in aggregates with a single stimulus. The phase-resetting response to hyperpolarizing pulses was qualitatively the reverse of that produced by depolarizing pulses. A very high-amplitude depolarizing or hyperpolarizing pulse could produce rapid repetitive activity. Theoretical aspects of these phenomena are discussed.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献