O2 consumption during exercise in dogs--roles of splenic contraction and alpha-adrenergic vasoconstriction

Author:

Longhurst J. C.,Musch T. I.,Ordway G. A.

Abstract

To examine the influence of alpha-adrenergic vasoconstriction on the aerobic capacity of dogs, we calculated O2 consumption (VO2) by the Fick method during submaximal and maximal exertion before and during alpha-adrenergic blockade with phentolamine. Regional blood flow was measured with radioactive microspheres. alpha-Adrenergic receptor blockade reduced VO2 by 12.9% during submaximal and 17.9% during maximal exercise. Arterial and venous lactic acid approximately doubled during both levels of stress in the presence of alpha-adrenergic receptor blockade. Calculated VO2 decreased because arteriovenous O2 (A-V)O2 extraction was reduced by 11.6% during submaximal exercise. During maximal exercise a 16.7% decrease in (A-V)O2 extraction and a 5.7% decrease in cardiac output contributed to the decrease in maximal VO2. During both levels of stress, (A-V)O2 extraction was reduced because arterial O2 content was decreased. Since circulating hematocrits during exercise were reduced by alpha-adrenergic receptor blockade (43-38%), we postulate that splenic contraction likely was inhibited. Additionally, distribution of blood flow to skeletal muscle and visceral organs was unaltered by alpha-blockade. To examine the importance of splenic contraction during maximal exercise, we examined hemodynamic and metabolic responses before and after splenectomy. Compared with the spleen-intact condition, splenectomized dogs demonstrated a 12.6% reduction in VO2 as a result of 7.7 and 5.5% reductions in (A-V)O2 extraction and cardiac output, respectively. (A-V)O2 extraction was reduced because arterial O2 content and circulating hematocrit during exercise were decreased. Therefore, in the exercising dog, alpha-adrenergic receptor blockade reduces O2 consumption and causes a shift to anaerobic metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3