Influence of pacing site on canine left ventricular contraction

Author:

Burkhoff D.,Oikawa R. Y.,Sagawa K.

Abstract

We investigated the influence of pacing site on several aspects of left ventricular (LV) performance to test the hypothesis that "effective ventricular muscle mass" is reduced with direct ventricular pacing. All studies were performed on isolated supported canine hearts that were constrained to contract isovolumically. To determine the influence of pacing site on magnitude and time course of isovolumic LV pressure (P) generation, LVP waves were recorded in eight isolated hearts paced at 130 beats/min. Pacing was epicardially from atrium, LV apex, LV free wall, right ventricular free wall (RVF), and endocardially from right ventricular endocardium. In a given heart, peak LVP was greatest with atrial pacing and smallest with RVF pacing, the difference being on average 26 +/- 10% (mean +/- SD) of the former pressure. The other pacing sites produced intermediate peak LVPs. When instantaneous LVP waves, obtained while pacing from each of the five sites, were normalized by their respective amplitudes, they were virtually superimposable up to the time of peak pressure and only slightly different during the remainder of the cardiac cycle. With changes in pacing site there was a linear negative correlation (r = 0.971) between changes in peak pressure and changes in duration of the QRS complex of a bipolar epicardial electrogram with an average slope of -0.51 mmHg/ms. Compared with atrial pacing, the slope of the end-systolic pressure-volume relation, Ees, was decreased with ventricular pacing, but Vo, the volume axis intercept, was relatively constant.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3