Mechanism of glutamate stimulation of CO production in cerebral microvessels

Author:

Leffler Charles W.1,Balabanova Liliya1,Fedinec Alexander L.1,Waters Christopher M.1,Parfenova Helena1

Affiliation:

1. Laboratory for Research in Neonatal Physiology, Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163

Abstract

Dilation of piglet pial arterioles to glutamate involves carbon monoxide (CO) produced from heme by heme oxygenase-2 (HO-2). Piglet cerebral microvessels and endothelial and smooth muscle cells grown on microcarrier beads were used to address the hypothesis that glutamate increases endothelial CO production by increasing HO-2 catalytic activity. CO was measured by gas chromatography/mass spectrometry. Glutamate increased CO production from endogenous heme by cerebral microvessels, endothelial cells, and smooth muscle cells. Glutamate increased the conversion of exogenous heme to CO. Protein tyrosine kinase inhibition blocked glutamate stimulation of CO production. Inhibition of protein tyrosine phosphatases stimulated CO production. Conversely, neither phorbol myristate acetate nor H-7 changed glutamate stimulation of CO production. The mechanism of HO-2 stimulation by glutamate appears to be independent of cytosolic Ca, because stimulation of CO production by glutamate was the same in Careplete medium, Ca-free medium with ionomycin, and Careplete medium with ionomycin. Therefore, glutamate appears to increase HO-2 catalytic activity in cerebral microvessels via a tyrosine kinase mediated pathway.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3