Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy

Author:

Sharma Saumya,Taegtmeyer Heinrich,Adrogue Julia,Razeghi Peter,Sen Shiraj,Ngumbela Kholiswa,Essop M. Faadiel

Abstract

Hypobaric hypoxia induces right ventricular hypertrophy. The relative contribution of pulmonary hypertension, decreased arterial oxygen, and neuroendocrine stimulation to the transcriptional profile of hypoxia-induced right ventricular hypertrophy is unknown. Whereas both ventricles are exposed to hypoxia and neuroendocrine stimulation, only the right ventricle is exposed to increased load. We postulated that right ventricular hypertrophy would reactivate the fetal gene transcriptional profile in response to increased load. We measured the expression of candidate genes in the right ventricle of rats exposed to hypobaric hypoxia (11% O2) and compared the results with the left ventricle. Hypoxia induced right ventricular hypertrophy without fibrosis. In the right ventricle only, atrial natriuretic factor transcript levels progressively increased starting at day 7. Metabolic genes were differentially regulated, suggesting a substrate switch from fatty acids to glucose during early hypoxia and a switch back to fatty acids by day 14. There was also a switch in myosin isogene expression and a downregulation of sarcoplasmic/endoplasmic ATPase 2a during early hypoxia, whereas later, both myosin isoforms and SERCA2a were upregulated. When the right and left ventricle were compared, the transcript levels of all genes, except for myosin isoforms and pyruvate dehydrogenase kinase-4, differed dramatically suggesting that all these genes are regulated by load. Our findings demonstrate that hypoxia-induced right ventricular hypertrophy transiently reactivates the fetal gene program. Furthermore, myosin iso-gene and pyruvate dehydrogenase kinase-4 expression is not affected by load, suggesting that either hypoxia itself or neuroendocrine stimulation is the primary regulator of these genes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3