K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts

Author:

Chilton L.,Ohya S.,Freed D.,George E.,Drobic V.,Shibukawa Y.,MacCannell K. A.,Imaizumi Y.,Clark R. B.,Dixon I. M. C.,Giles W. R.

Abstract

Despite the important roles played by ventricular fibroblasts and myofibroblasts in the formation and maintenance of the extracellular matrix, neither the ionic basis for membrane potential nor the effect of modulating membrane potential on function has been analyzed in detail. In this study, whole cell patch-clamp experiments were done using ventricular fibroblasts and myofibroblasts. Time- and voltage-dependent outward K+ currents were recorded at depolarized potentials, and an inwardly rectifying K+ (Kir) current was recorded near the resting membrane potential (RMP) and at more hyperpolarized potentials. The apparent reversal potential of Kir currents shifted to more positive potentials as the external K+ concentration ([K+]o) was raised, and this Kir current was blocked by 100–300 μM Ba2+. RT-PCR measurements showed that mRNA for Kir2.1 was expressed. Accordingly, we conclude that Kir current is a primary determinant of RMP in both fibroblasts and myofibroblasts. Changes in [K+]o influenced fibroblast membrane potential as well as proliferation and contractile functions. Recordings made with a voltage-sensitive dye, DiBAC3(4), showed that 1.5 mM [K+]o resulted in a hyperpolarization, whereas 20 mM [K+]o produced a depolarization. Low [K+]o (1.5 mM) enhanced myofibroblast number relative to control (5.4 mM [K+]o). In contrast, 20 mM [K+]o resulted in a significant reduction in myofibroblast number. In separate assays, 20 mM [K+]o significantly enhanced contraction of collagen I gels seeded with myofibroblasts compared with control mechanical activity in 5.4 mM [K+]o. In combination, these results show that ventricular fibroblasts and myofibroblasts express a variety of K+ channel α-subunits and demonstrate that Kir current can modulate RMP and alter essential physiological functions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3