Author:
Lomax Alan E.,Kondo Colleen S.,Giles Wayne R.
Abstract
Consistent differences in K+ currents in left and right atria of adult mouse hearts have been identified by the application of current- and voltage-clamp protocols to isolated single myocytes. Left atrial myocytes had a significantly ( P < 0.05) larger peak outward K+ current density than myocytes from the right atrium. Detailed analysis revealed that this difference was due to the rapidly activating sustained K+ current, which is inhibited by 100 μM 4-aminopyridine (4-AP); this current was almost three times larger in the left atrium than in the right atrium. Accordingly, 100 μM 4-AP caused a significantly ( P < 0.05) larger increase in action potential duration in left than in right atrial myocytes. Inward rectifier K+ current density was also significantly ( P < 0.05) larger in left atrial myocytes. There was no difference in the voltage-dependent L-type Ca2+ current between left and right atria. As expected from this voltage-clamp data, the duration of action potentials recorded from single myocytes was significantly ( P < 0.05) shorter in myocytes from left atria, and left atrial tissue was found to have a significantly ( P < 0.05) shorter effective refractory period than right atrial tissue. These results reveal similarities between mice and other mammalian species where the left atrium repolarizes more quickly than the right, and provide new insight into cellular electrophysiological mechanisms responsible for this difference. These findings, and previous results, suggest that the atria of adult mice may be a suitable model for detailed studies of atrial electrophysiology and pharmacology under control conditions and in the context of induced atrial rhythm disturbances.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献