Impaired hemodynamics and endothelial vasomotor function via endoperoxide-mediated vasoconstriction in the carotid artery of spontaneously hypertensive rats

Author:

Denniss Steven G.,Rush James W. E.

Abstract

The fact that endothelium removal increases diameter and compliance in the common carotid artery (CCA) of spontaneously hypertensive rats (SHR) and that improving CCA endothelium-dependent vasorelaxation has been shown to normalize a reduced systolic blood flow through the SHR CCA compared with normotensive Wistar-Kyoto rats (WKY) suggests that endothelial vasomotor dysfunction may be linked to altered large artery hemodynamics in hypertension. The experiments herein were designed to further investigate WKY and SHR CCA hemodynamics and endothelium-dependent vasomotor functions. It was hypothesized that CCA blood flow and conductance would be reduced throughout the cardiac cycle in SHR and that endothelium-dependent contractile activity would impair SHR CCA vasorelaxation. We report that mean, maximal systolic, and diastolic blood flow was reduced in SHR vs. WKY CCA, as was vascular conductance. Pressure was augmented in SHR CCA and accompanied by late systolic flow augmentation so that total flow during systole was indeed no different between strains, possibly explained by earlier lower body wave reflection. While ACh stimulation in isolated precontracted WKY CCA caused a robust nitric oxide (NO)-mediated vasorelaxation, endothelium-dependent, cyclooxygenase (COX)-mediated contractile activity stimulated by high ACh concentration impaired NO- and non-NO/non-COX-mediated vasorelaxation in precontracted SHR CCA. In quiescent CCA, this endothelium-dependent contractile response was COX-1 and thromboxane-prostanoid receptor mediated and modulated by the availability of NO. These data collectively suggest that endothelium-dependent, COX-mediated endoperoxide signaling in the CCA of SHR may elicit vasoconstriction, which could shift the mechanical properties of this conduit artery and contribute to reduced CCA blood flow in vivo.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3