Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries

Author:

Wagenseil Jessica E.,Nerurkar Nandan L.,Knutsen Russell H.,Okamoto Ruth J.,Li Dean Y.,Mecham Robert P.

Abstract

Supravalvular aortic stenosis (SVAS) is associated with decreased elastin and altered arterial mechanics. Mice with a single deletion in the elastin gene (ELN+/−) are models for SVAS. Previous studies have shown that elastin haploinsufficiency in these mice causes hypertension, decreased arterial compliance, and changes in arterial wall structure. Despite these differences, ELN+/− mice have a normal life span, suggesting that the arteries remodel and adapt to the decreased amount of elastin. To test this hypothesis, we performed in vitro mechanical tests on abdominal aorta, ascending aorta, and left common carotid artery from ELN+/− and wild-type (C57BL/6J) mice. We compared the circumferential and longitudinal stress-stretch relationships and residual strains. The circumferential stress-stretch relationship is similar between genotypes and changes <3% with longitudinal stretch at lengths within 10% of the in vivo value. At mean arterial pressure, the circumferential stress in the ascending aorta is higher in ELN+/− than in wild type. Although arterial pressures are higher, the increased number of elastic lamellae in ELN+/− arteries results in similar tension/lamellae compared with wild type. The longitudinal stress-stretch relationship is similar between genotypes for most arteries. Compared with wild type, the in vivo longitudinal stretch is lower in ELN+/− abdominal and carotid arteries and the circumferential residual strain is higher in ELN+/− ascending aorta. The increased circumferential residual strain brings the transmural strain distribution in ELN+/− ascending aorta close to wild-type values. The mechanical behavior of ELN+/− arteries is likely due to the reduced elastin content combined with adaptive remodeling during vascular development.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3