Effects of clenbuterol on contractility and Ca2+ homeostasis of isolated rat ventricular myocytes

Author:

Siedlecka U.,Arora M.,Kolettis T.,Soppa G. K. R.,Lee J.,Stagg M. A.,Harding S. E.,Yacoub M. H.,Terracciano C. M. N.

Abstract

Clenbuterol, a compound classified as a β2-adrenoceptor (AR) agonist, has been employed in combination with left ventricular assist devices (LVADs) to treat patients with severe heart failure. Previous studies have shown that chronic administration of clenbuterol affects cardiac excitation-contraction coupling. However, the acute effects of clenbuterol and the signaling pathway involved remain undefined. We investigated the acute effects of clenbuterol on isolated ventricular myocyte sarcomere shortening, Ca2+ transients, and L-type Ca2+ current and compared these effects to two other clinically used β2-AR agonists: fenoterol and salbutamol. Clenbuterol (30 μM) produced a negative inotropic response, whereas fenoterol showed a positive inotropic response. Salbutamol had no significant effects. Clenbuterol reduced Ca2+ transient amplitude and L-type Ca2+ current. Selective β1-AR blockade did not affect the action of clenbuterol on sarcomere shortening but significantly reduced contractility in the presence of fenoterol and salbutamol ( P < 0.05). Incubation with 2 μg/ml pertussis toxin significantly reduced the negative inotropic effects of 30 μM clenbuterol. In addition, overexpression of inhibitory G protein (Gi) by adenoviral transfection induced a stronger clenbuterol-mediated negative inotropic effect, suggesting the involvement of the Gi protein. We conclude that clenbuterol does not increase and, at high concentrations, significantly depresses contractility of isolated ventricular myocytes, an effect not seen with fenoterol or salbutamol. In its negative inotropism, clenbuterol predominantly acts through Gi, and the consequent downstream signaling pathways activation may explain the beneficial effects observed during chronic administration of clenbuterol in patients treated with LVADs.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3