Stretch-activated channel activation promotes early afterdepolarizations in rat ventricular myocytes under oxidative stress

Author:

Wang Yanggan,Joyner Ronald W.,Wagner Mary B.,Cheng Jun,Lai Dongwu,Crawford Brian H.

Abstract

Mechanical stretch and oxidative stress have been shown to prolong action potential duration (APD) and produce early afterdepolarizations (EADs). Here, we developed a simulation model to study the role of stretch-activated channel (SAC) currents in triggering EADs in ventricular myocytes under oxidative stress. We adapted our coupling clamp circuit so that a model ionic current representing the actual SAC current was injected into ventricular myocytes and added as a real-time current. This current was calculated as ISAC = GSAC * ( Vm − ESAC), where GSAC is the stretch-activated conductance, Vm is the membrane potential, and ESAC is the reversal potential. In rat ventricular myocytes, application of GSAC did not produce sustained automaticity or EADs, although turn-on of GSAC did produce some transient automaticity at high levels of GSAC. Exposure of myocytes to 100 μM H2O2 induced significant APD prolongation and increase in intracellular Ca2+ load and transient, but no EAD or sustained automaticity was generated in the absence of GSAC. However, the combination of GSAC and H2O2 consistently produced EADs at lower levels of GSAC (2.6 ± 0.4 nS, n = 14, P < 0.05). Pacing myocytes at a faster rate further prolonged APD and promoted the development of EADs. SAC activation plays an important role in facilitating the development of EADs in ventricular myocytes under acute oxidative stress. This mechanism may contribute to the increased propensity to lethal ventricular arrhythmias seen in cardiomyopathies, where the myocardium stretch and oxidative stress generally coexist.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3