Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes

Author:

Dandré Frédéric,Owens Gary K.

Abstract

Platelet-derived growth factor (PDGF)-BB, a potent mitogen for mesenchymal cells, also downregulates expression of multiple smooth muscle (SM) cell (SMC)-specific markers. However, there is conflicting evidence whether PDGF-BB represses SMC marker expression at a transcriptional or posttranscriptional level, and little is known regarding the mechanisms responsible for these effects. Results of the present studies provide clear evidence that PDGF-BB treatment strongly repressed SM α-actin, SM myosin heavy chain (MHC), and SM22α promoters in SMCs. Of major significance for resolving previous controversies in the field, we found PDGF-BB-induced repression of SMC marker gene promoters in subconfluent, but not postconfluent, cultures. Treatment of postconfluent SMCs with a tyrosine phosphatase inhibitor restored PDGF-BB-induced repression, whereas treatment of subconfluent SMCs with a tyrosine kinase blocker abolished PDGF-BB-induced repression, suggesting that a tyrosine phosphorylation event mediates cell density-dependent effects. On the basis of previous observations that Ets-1 transcription factor is upregulated within phenotypically modulated neointimal SMCs, we tested whether Ets-1 would repress SMC marker expression. Consistent with this hypothesis, results of cotransfection experiments indicated that Ets-1 overexpression reduced transcriptional activity of SMC marker promoter constructs in SMCs, whereas it increased activity of SM α-actin promoter in endothelial cells. PDGF-BB treatment increased expression of Ets-1 in cultured SMCs, and SM α-actin mRNA expression was reduced in multiple independent clones of SMCs stably transfected with an Ets-1-overexpressing construct. Taken together, results of these experiments provide novel insights regarding possible mechanisms whereby PDGF-BB and Ets-1 may contribute to SMC phenotypic switching associated with vascular injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3