The Na+/K+ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue

Author:

Sánchez Carlos123,Corrias Alberto3,Bueno-Orovio Alfonso3,Davies Mark4,Swinton Jonathan4,Jacobson Ingemar5,Laguna Pablo12,Pueyo Esther123,Rodríguez Blanca3

Affiliation:

1. Communications Technology Group, I3A and IIS, University of Zaragoza, Zaragoza;

2. Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Spain;

3. Computational Biology Group, Department of Computer Science, University of Oxford, Oxford;

4. Computational Biology, ASTL, AstraZeneca, Macclesfield, United Kingdom; and

5. AstraZeneca R & D, Mölndal, Sweden

Abstract

Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na+/K+ pump current ( GNaK) as well as conductances of inward rectifier potassium current ( GK1) and fast inward sodium current ( GNa). GNaK plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). GK1 controls DF through modulation of AP, APD restitution, RP, and CV. GNa is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na+/K+ pump current in determining human atrial electrophysiology.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3