Experimental and theoretical ventricular electrograms and their relation to electrophysiological gradients in the adult rat heart

Author:

Weber dos Santos Rodrigo1,Nygren Anders234,Otaviano Campos Fernando15,Koch Hans6,Giles Wayne R.27

Affiliation:

1. Department of Computer Science, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil;

2. Department of Physiology and Biophysics,

3. Department of Electrical and Computer Engineering,

4. Centre for Bioengineering Research and Education, and

5. Institute of Biophysics, Medical University of Graz, Graz, Austria; and

6. Department of Biosignals, Physikalisch-Technische Bundesanstalt, Berlin, Germany

7. Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada;

Abstract

The electrical activity of adult mouse and rat hearts has been analyzed extensively, often as a prerequisite for genetic engineering studies or for the development of rodent models of human diseases. Some aspects of the initiation and conduction of the cardiac action potential in rodents closely resemble those in large mammals. However, rodents have a much higher heart rate and their ventricular action potential is triangular and very short. As a consequence, an interpretation of the electrocardiogram in the mouse and rat remains difficult and controversial. In this study, optical mapping techniques have been applied to an in vitro left ventricular adult rat preparation to obtain patterns of conduction and action potential duration measurements from the epicardial surface. This information has been combined with previously published mathematical models of the rat ventricular myocyte to develop a bidomain model for action potential propagation and electrogram formation in the rat left ventricle. Important insights into the basis for the repolarization waveform in the ventricular electrogram of the adult rat have been obtained. Notably, our model demonstrated that the biphasic shape of the rat ventricular repolarization wave can be explained in terms of the transmural and apex-to-base gradients in action potential duration that exist in the rat left ventricle.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3