Increasing P50 does not improve Do 2crit or systemicV˙o 2 in severe anemia

Author:

Eichelbrönner Otto1,D'Almeida Mark1,Sielenkämper Andreas1,Sibbald William J.1,Chin-Yee Ian H.1

Affiliation:

1. A. C. Burton Vascular Biology Laboratory, University of Western Ontario, London, Ontario, Canada N6A 4G5

Abstract

Reducing the hemolobin (Hb)-O2 binding affinity facilitates O2 unloading from Hb, potentially increasing tissue mitochondrial O2 availability. We hypothesized that a reduction of Hb-O2 affinity would increase O2extraction when tissues are O2 supply dependent, reducing the threshold of critical O2 delivery (Do 2 CRIT). We investigated the effects of increased O2 tension at which Hb is 50% saturated (P50) on systemic O2 uptake (V˙o 2SYS), Do 2 CRIT, lactate production, and acid-base balance during isovolemic hemodilution in conscious rats. After infusion of RSR13, an allosteric modifier of Hb, P50increased from 36.6 ± 0.3 to 48.3 ± 0.6 but remained unchanged at 35.4 ± 0.8 mmHg after saline (control, CON). Arterial O2 saturations were equivalent between RSR13 and saline groups, but venous Po 2 was higher and venous O2 saturation was lower after RSR13. Convective O2 delivery progressively declined during hemodilution reaching the Do 2 CRIT at 3.4 ± 0.8 ml · min−1 · 100 g−1 (CON) and 3.6 ± 0.6 ml · min−1 · 100 g−1 (RSR13). At Hb of 8.1 g/lV˙o 2SYS started to decrease (CON: 1.9 ± 0.1; RSR13: 1.8 ± 0.2 ml · min−1 · 100 g−1) and fell to 0.8 ± 0.2 (CON) and 0.7 ± 0.2 ml · min−1 · 100 g−1 (RSR13). Arterial lactate was lower in RSR13-treated than in control animals when animals were O2 supply dependent. The decrease in base excess, arterial pH, and bicarbonate during O2 supply dependence was significantly less after RSR13 than after saline. These findings demonstrate that during O2 supply dependence caused by severe anemia, reducing Hb-O2 binding affinity does not affect V˙o 2SYS or Do 2 CRIT but appears to have beneficial effects on oxidative metabolism and acid base balance.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3