Subdiaphragmatic murine electrophysiological studies: sequential determination of ventricular refractoriness and arrhythmia induction

Author:

Gutstein David E.1,Danik Stephan B.1,Sereysky Jedd B.1,Morley Gregory E.1,Fishman Glenn I.1

Affiliation:

1. Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10010

Abstract

Programmed electrical stimulation (PES) is a crucial aspect of the evaluation of the risk of arrhythmias in cardiac patients and provides a powerful tool for understanding the mechanisms of arrhythmia in experimental models. Whereas PES in the mouse is well characterized, the procedures allowing for follow-up studies in the same animal have not been developed. In this report, we describe a novel subdiaphragmatic approach that allows for repeat electrophysiological studies in the mouse. Under inhaled anesthesia, PES was performed in 36 wild-type mice via a stimulating electrode introduced through an epigastric incision and placed directly into the diaphragmatic surface of the heart. The procedure was repeated 7 days later. Ventricular effective refractory periods (VERP) did not change significantly between the initial and follow-up trials. Chronic treatment with amiodarone, however, was associated with a 70% prolongation in VERP from initial to follow-up studies ( P ≤ 0.001). In addition, PES of a genetically modified strain with sudden cardiac death, the connexin43 conditional knockout mouse consistently induced lethal polymorphic ventricular tachycardia. Thus sequential PES in mice is feasible with the use of a subdiaphragmatic approach, yields reproducible VERP values, and can be used to follow pharmacologically induced changes in VERP and identify mice at risk of lethal ventricular arrhythmias.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3