Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury

Author:

Xie Yan,Zhu Yi,Zhu Wei-Zhong,Chen Le,Zhou Zhao-Nian,Yuan Wen-Jun,Yang Huang-Tian

Abstract

Cardioprotection by intermittent high-altitude (IHA) hypoxia against ischemia-reperfusion (I/R) injury is associated with Ca2+overload reduction. Phospholamban (PLB) phosphorylation relieves cardiac sarcoplasmic reticulum (SR) Ca2+-pump ATPase, a critical regulator in intracellular Ca2+cycling, from inhibition. To test the hypothesis that IHA hypoxia increases PLB phosphorylation and that such an effect plays a role in cardioprotection, we compared the time-dependent changes in the PLB phosphorylation at Ser16(PKA site) and Thr17(CaMKII site) in perfused normoxic rat hearts with those in IHA hypoxic rat hearts submitted to 30-min ischemia (I30) followed by 30-min reperfusion (R30). IHA hypoxia improved postischemic contractile recovery, reduced the maximum extent of ischemic contracture, and attenuated I/R-induced depression in Ca2+-pump ATPase activity. Although the PLB protein levels remained constant during I/R in both groups, Ser16phosphorylation increased at I30 and 1 min of reperfusion (R1) but decreased at R30 in normoxic hearts. IHA hypoxia upregulated the increase further at I30 and R1. Thr17phosphorylation decreased at I30, R1, and R30 in normoxic hearts, but IHA hypoxia attenuated the depression at R1 and R30. Moreover, PKA inhibitor H89 abolished IHA hypoxia-induced increase in Ser16phosphorylation, Ca2+-pump ATPase activity, and the recovery of cardiac performance after ischemia. CaMKII inhibitor KN-93 also abolished the beneficial effects of IHA hypoxia on Thr17phosphorylation, Ca2+-pump ATPase activity, and the postischemic contractile recovery. These findings indicate that IHA hypoxia mitigates I/R-induced depression in SR Ca2+-pump ATPase activity by upregulating dual-site PLB phosphorylation, which may consequently contribute to IHA hypoxia-induced cardioprotection against I/R injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3