Extracellular proton depression of peak and late Na+ current in the canine left ventricle

Author:

Murphy Lisa1,Renodin Danielle1,Antzelevitch Charles1,Di Diego José M.1,Cordeiro Jonathan M.1

Affiliation:

1. Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York

Abstract

Cardiac ischemia reduces excitability in ventricular tissue. Acidosis (one component of ischemia) affects a number of ion currents. We examined the effects of extracellular acidosis (pH 6.6) on peak and late Na+ current ( INa) in canine ventricular cells. Epicardial and endocardial myocytes were isolated, and patch-clamp techniques were used to record INa. Action potential recordings from left ventricular wedges exposed to acidic Tyrode solution showed a widening of the QRS complex, indicating slowing of transmural conduction. In myocytes, exposure to acidic conditions resulted in a 17.3 ± 0.9% reduction in upstroke velocity. Analysis of fast INa showed that current density was similar in epicardial and endocardial cells at normal pH (68.1 ± 7.0 vs. 63.2 ± 7.1 pA/pF, respectively). Extracellular acidosis reduced the fast INa magnitude by 22.7% in epicardial cells and 23.1% in endocardial cells. In addition, a significant slowing of the decay (time constant) of fast INa was observed at pH 6.6. Acidosis did not affect steady-state inactivation of INa or recovery from inactivation. Analysis of late INa during a 500-ms pulse showed that the acidosis significantly reduced late INa at 250 and 500 ms into the pulse. Using action potential clamp techniques, application of an epicardial waveform resulted in a larger late INa compared with when an endocardial waveform was applied to the same cell. Acidosis caused a greater decrease in late INa when an epicardial waveform was applied. These results suggest acidosis reduces both peak and late INa in both cell types and contributes to the depression in cardiac excitability observed under ischemic conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3