In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes

Author:

Vecchietti Stefania,Grandi Eleonora,Severi Stefano,Rivolta Ilaria,Napolitano Carlo,Priori Silvia G.,Cavalcanti Silvio

Abstract

The effects of two SCN5A mutations (Y1795C, Y1795H), previously identified in one Long QT syndrome type 3 (LQT3) and one Brugada syndrome (BrS) families, were investigated by means of numerical modeling of ventricular action potential (AP). A Markov model capable of reproducing a wild-type as well as a mutant sodium current ( INa) was identified and was included into the Luo-Rudy ventricular cell model for action potential (AP) simulation. The characteristics of endocardial, midmyocardial, and epicardial cells were reproduced by differentiating the transient outward current ( ITO) and the ratio of slow delayed rectifier potassium ( IKs) to rapid delayed rectifier current ( IKr). Administration of flecainide and mexiletine was simulated by appropriately modifying INa, calcium current ( ICa), ITO, and IKr. Y1795C prolonged AP in a rate-dependent manner, and early afterdepolarizations (EADs) appeared during bradycardia in epicardial and midmyocardial cells; flecainide and mexiletine shortened AP and abolished EADs. Y1795H resulted in minimal changes in the APs; flecainide but not mexiletine induced APs heterogeneity across the ventricular wall that accounts for the ST segment elevation induced by flecainide in Y1795H carriers. The AP abnormalities induced by Y1795H and Y1795C can explain the clinically observed surface ECG phenotype. For the first time by modeling the effects of flecainide and mexiletine, we are able to gather mechanistic insights on the response to drugs administration observed in affected patients.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3