Isolation of interstitial fluid from skeletal muscle and subcutis in mice using a wick method

Author:

Markhus Carl Erik1,Wiig Helge1

Affiliation:

1. Department of Biomedicine, Section of Physiology, University of Bergen, N-5009 Bergen, Norway

Abstract

Until recent years, mice were sparsely used in physiological experiments, and therefore, data on the basic cardiovascular parameters of mice are lacking. Our aim was to gain access to interstitial fluid and thereby study transcapillary fluid dynamics in this species. Using a modified wick method, we were able to isolate interstitial fluid from subcutis and skeletal muscle in mice. Three-stranded, dry, nylon wicks were inserted post mortem in an attempt to avoid local inflammation and thus eliminate protein extravasation and wick contamination. Colloid osmotic pressure (COP) was measured with a colloid osmometer for submicroliter samples and averaged (means ± SE) 18.7 ± 0.4 in plasma, 9.1 ± 0.4 in subcutis, and 12.3 ± 0.5 mmHg in muscle. HPLC of plasma and wick fluid showed similar patterns except for some minor peaks eluting in the <40-kDa region. Plasma protein extravasation as determined by 125I-labeled human serum albumin showed that contamination of wick fluid by plasma proteins was negligible (<2%). Capillary hyperfiltration induced by intravenous infusion of saline (10% of body wt) was reflected in tissue fluid isolated by wicks as shown by the average postinfusion COP values of 14.5 ± 0.6, 6.8 ± 0.3, and 7.7 ± 0.4 mmHg in plasma, subcutis, and muscle, respectively. We conclude that the wick technique can be easily adapted for use in mice and may represent a reliable method to isolate interstitial fluid and study transcapillary fluid flux in this species.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3