Author:
Alvarez Julio,Coulombe Alain,Cazorla Olivier,Ugur Mehmet,Rauzier Jean-Michel,Magyar Janos,Mathieu Eve-Lyne,Boulay Guylain,Souto Rafael,Bideaux Patrice,Salazar Guillermo,Rassendren François,Lacampagne Alain,Fauconnier Jérémy,Vassort Guy
Abstract
Extracellular purines and pyrimidines have major effects on cardiac rhythm and contraction. ATP/UTP are released during various physiopathological conditions, such as ischemia, and despite degradation by ectonucleotidases, their interstitial concentrations can markedly increase, a fact that is clearly associated with arrhythmia. In the present whole cell patch-clamp analysis on ventricular cardiomyocytes isolated from various mammalian species, ATP and UTP elicited a sustained, nonselective cationic current, IATP. UDP was ineffective, whereas 2′(3′)- O-(4-benzoylbenzoyl)-ATP was active, suggesting that P2Y2 receptors are involved. IATP resulted from the binding of ATP4− to P2Y2 purinoceptors. IATP was maintained after ATP removal in the presence of guanosine 5′-[γ-thio]triphosphate and was inhibited by U-73122, a PLC inhibitor. Single-channel openings are rather infrequent under basal conditions. ATP markedly increased opening probability, an effect prevented by U-73122. Two main conductance levels of 14 and 23 pS were easily distinguished. Similarly, in fura-2-loaded cardiomyocytes, Mn2+ quenching and Ba2+ influx were significant only in the presence of ATP or UTP. Adult rat ventricular cardiomyocytes expressed transient receptor potential channel TRPC1, -3, -4, and -7 mRNA and the TRPC3 and TRPC7 proteins that coimmunoprecipitated. Finally, the anti-TRPC3 antibody added to the patch pipette solution inhibited IATP. In conclusion, activation of P2Y2 receptors, via a G protein and stimulation of PLCβ, induces the opening of heteromeric TRPC3/7 channels, leading to a sustained, nonspecific cationic current. Such a depolarizing current could induce cell automaticity and trigger the arrhythmic events during an early infarct when ATP/UTP release occurs. These results emphasize a new, potentially deleterious role of TRPC channel activation.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献