Remodeling of resistance arteries in organoid culture is modulated by pressure and pressure pulsation and depends on vasomotion

Author:

Bakker Erik N. T. P.,Sorop Oana,Spaan Jos A. E.,VanBavel Ed

Abstract

The hypothesis was tested that pressure and pressure pulsation modulate vascular remodeling. Arterioles (∼200 μm lumen diameter) were dissected from rat cremaster muscle and studied in organoid culture. In the first series, arterioles were kept at a stable pressure level of either 50 or 100 mmHg for 3 days. Both groups showed a progressive increase in myogenic tone during the experiment. Arterioles kept at 50 mmHg showed larger endothelium-dependent dilation, compared with vessels kept at 100 mmHg on day 3. Remodeling, as indicated by the reduction in maximally dilated diameter at 100 mmHg, was larger in arterioles kept at 50 mmHg compared with 100 mmHg: 34 ± 4.5 versus 10 ± 4.8 μm ( P < 0.05). In the second series, arterioles were subjected to a stable pressure of 60 mmHg or oscillating pressure of 60 ± 10 mmHg (1.5 Hz) for 4 days. Pressure pulsation induced partial dilation and was associated with less remodeling: 34 ± 4.0 versus 19 ± 4.5 μm ( P < 0.01) for stable pressure versus oscillating pressure. Vasomotion was frequently observed in all groups, and inward remodeling was larger in vessels with vasomotion: 30 ± 2.5 μm compared with vessels that did not exhibit vasomotion: 8.0 ± 5.0 μm ( P < 0.01). In conclusion, these results indicate that remodeling is not enhanced by high pressure. Pressure pulsation causes partial dilation and reduces inward remodeling. The appearance of vasomotion is associated with enhanced inward remodeling.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3