Affiliation:
1. Biochemistry and Molecular Medicine, University of California, Davis, California
Abstract
Reperfused hypertrophic hearts are prone to develop reflow abnormalities, which are likely to impair O2 return to the myocardium. Yet, reflow deficit may not be the only factor determining postischemic oxygenation in the hypertrophic heart. Altered O2 demand may also contribute to hypoxia. In addition, the extent to which myocardial Po2 dictates energy and functional recovery in the reperfused heart remains uncertain. In the present study, moderately hypertrophied hearts from spontaneously hypertensive rats were subjected to ischemia-reperfusion, and the recovery time courses of pH and high-energy phosphates were followed by 31P NMR. 1H NMR measurement of intracellular myoglobin assessed tissue O2 levels. The present study found that the exacerbation of hypoxia in the postischemic spontaneously hypertensive rat heart arises mostly from impaired microvascular supply of O2. However, postischemic myocardial Po2, at least when it exceeds ∼18% of the preischemic level, does not limit mitochondrial respiration and high-energy phosphate resynthesis. It only passively reflects changes in the O2 supply-demand balance.
Funder
American Heart Association (AHA)
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献