Author:
Corteling Randolph L.,Brett Suzanne E.,Yin Hao,Zheng Xi-Long,Walsh Michael P.,Welsh Donald G.
Abstract
Uridine triphosphate (UTP) constricts cerebral arteries by activating transduction pathways that increase cytosolic [Ca2+] and myofilament Ca2+ sensitivity. The signaling proteins that comprise these pathways remain uncertain with recent studies implicating a role for several G proteins. To start clarifying which G proteins enable UTP-induced vasoconstriction, a small interfering RNA (siRNA) approach was developed to knock down specified targets in rat cerebral arteries. siRNA directed against Gq and RhoA was introduced into isolated cerebral arteries using reverse permeabilization. Following a defined period of organ culture, arteries were assayed for contractile function, mRNA levels, and protein expression. Targeted siRNA reduced RhoA or Gq mRNA expression by 60–70%, which correlated with a reduction in RhoA but not Gq protein expression. UTP-induced constriction was abolished in RhoA-depleted arteries, but this was not due to a reduction in myosin light chain phosphorylation. UTP-induced actin polymerization was attenuated in RhoA-depleted arteries, which would explain the loss of agonist-induced constriction. In summary, this study illustrates that siRNA approaches can be effectively used on intact arteries to induce targeted knockdown given that the protein turnover rate is sufficiently high. It also demonstrates that the principal role of RhoA in agonist-induced constriction is to facilitate the formation of F-actin, the physical structure to which phosphorylated myosin binds to elicit arterial constriction.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献