Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality

Author:

Swoap S. J.,Li C.,Wess J.,Parsons A. D.,Williams T. D.,Overton J. M.

Abstract

It is generally accepted that cardiac sympathetic tone dominates the control of heart rate (HR) in mice. However, we have recently challenged this notion given that HR in the mouse is responsive to ambient temperature (Ta) and that the housing Tais typically 21–23°C, well below the thermoneutral zone (∼30°C) of this species. To specifically test the hypothesis that cardiac sympathetic tone is the primary mediator of HR control in the mouse, we first examined the metabolic and cardiovascular responses to rapid changes in Tato demonstrate the sensitivity of the mouse cardiovascular system to Ta. We then determined HR in 1) mice deficient in cardiac sympathetic tone (“β-less” mice), 2) mice deficient in cardiac vagal tone [muscarinic M2receptor ( M2R−/−) mice], and 3) littermate controls. At a Taof 30°C, the HR of β-less mice was identical to that of wild-type mice (351 ± 11 and 363 ± 10 beats/min, respectively). However, the HR of M2R−/−mice was significantly greater (416 ± 7 beats/min), demonstrating that vagal tone predominates over HR control at this Ta. When these mice were calorically restricted to 70% of normal intake, HR fell equally in wild-type, β-less, and M2R−/−mice (ΔHR = 73 ± 9, 76 ± 3, and 73 ± 7 beats/min, respectively), suggesting that the fall in intrinsic HR governs bradycardia of calorically restricted mice. Only when the Tawas relatively cool, at 23°C, did β-less mice exhibit a HR (442 ± 14 beats/min) that was different from that of littermate controls (604 ± 10 beats/min) and M2R−/−mice (602 ± 5 beats/min). These experiments conclusively demonstrate that in the absence of cold stress, regulation of vagal tone and modulation of intrinsic rate are important determinants of HR control in the mouse.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3