Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation

Author:

Zhang Rong-zhen,Gashev Anatoliy A.,Zawieja David C.,Davis Michael J.

Abstract

The passive and active length-tension relationships of isolated rat mesenteric lymphatics (∼150 μm ID), and adjacent small arteries (∼240 μm) and veins (∼275 μm) were compared under isometric conditions using a wire myograph. About 60% of the lymphatic vessels developed spontaneous contractions in physiological saline solution at nominal preload. To maximally activate smooth muscle, 145 mM K++ 5 × 10−5M norepinephrine was used for arteries, and 145 mM K++ 1 × 10−6M substance P was used for lymphatics and veins. In response, arteries exhibited monotonic force development to a plateau level, whereas lymphatics and veins showed biphasic force development, consisting of a transient force peak followed by partial relaxation to a plateau over ∼5 min. The passive and the active length-tension curves were similar in shape among all three vessels. However, the maximal active tension of arteries (3.4 ± 0.42 mN/mm) was significantly greater than peak active tension (0.59 ± 0.04 mN/mm) or plateau tension (0.20 ± 0.04 mN/mm) in small veins and greater than peak active tension (0.34 ± 0.02 mN/mm) or plateau tension (0.21 ± 0.02 mN/mm) in lymphatics. Maximal active medial wall stress was similar between lymphatics and veins but was approximately fivefold higher in small arteries. For lymphatics, the pressure calculated from the optimal preload was significantly higher than that found previously in isobaric studies of isolated lymphatics, suggesting the capacity to operate at higher than normal pressures for increased responsiveness. Our results represent the first mechanical comparisons of arterial, venous, and lymphatic vessels in the same vasculature.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3