Beyond oxygen transport: active role of erythrocytes in the regulation of blood flow

Author:

Richardson Kieran J.12,Kuck Lennart12,Simmonds Michael J.12

Affiliation:

1. Biorheology Research Laboratory, Griffith University, Gold Coast, Australia

2. Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia

Abstract

It was classically thought that the function of mammalian red blood cells (RBCs) was limited to serving as a vehicle for oxygen, given the cells’ abundance of cytosolic hemoglobin. Over the past decades, however, accumulating evidence indicates that RBCs have the capacity to sense low-oxygen tensions in hypoxic tissues, and, subsequently, release signaling molecules that influence the distribution of blood flow. The precise mechanisms that facilitate RBC modulation of blood flow are still being elucidated, although recent evidence indicates involvement of 1) adenosine triphosphate, capable of binding to purinergic receptors located on the vascular wall before initiating nitric oxide (NO; a powerful vasodilator) production in endothelial cells, and/or 2) nonvascular NO, which is now known to have several modes of production within RBCs, including an enzymatic process via a unique isoform of NO synthase (i.e., RBC-NOS), which has potential effects on the vascular smooth muscle. The physical properties of RBCs, including their tendency to form three-dimensional structures in low shear flow (i.e., aggregation) and their capacity to elongate in high shear flow (i.e., deformability), are only recently being viewed as mechanotransductive processes, with profound effects on vascular reactivity and tissue perfusion. Recent developments in intracellular signaling in RBCs, and the subsequent effects on the mechanical properties of blood, and blood flow, thus present a vivid expansion on the classic perspective of these abundant cells.

Funder

N/A

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3