Affiliation:
1. Department of Medicine, Division of Cardiology, Medical University of South Carolina; and
2. Ralph Johnson Veteran's Hospital, Charleston, South Carolina
Abstract
Histone deacetylases (HDACs) play integral roles in many cardiovascular biological processes ranging from transcriptional and translational regulation to protein stabilization and localization. There are 18 known HDACs categorized into 4 classes that can differ on the basis of substrate targets, subcellular localization, and regulatory binding partners. HDACs are classically known for their ability to remove acetyl groups from histone and nonhistone proteins that have lysine residues. However, despite their nomenclature and classical functions, discoveries from many research groups over the past decade have suggested that nondeacetylase roles exist for class IIa HDACs. This is not surprising given that class IIa HDACs have, for example, relatively poor deacetylase capabilities and are often shuttled in and out of nuclei upon specific pathological and nonpathological cardiac events. This review aims to consolidate and elucidate putative nondeacetylase roles for class IIa HDACs and, where possible, highlight studies that provide evidence for their noncanonical roles, especially in the context of cardiovascular maladies. There has been great interest recently in exploring the pharmacological regulators of HDACs for use in therapeutic interventions for treating cardiovascular diseases and inflammation. Thus it is of interest to earnestly consider nonenzymatic and or nondeacetylase roles of HDACs that might be key in potentiating or abrogating pathologies. These noncanonical HDAC functions may possibly yield new mechanisms and targets for drug discovery.
Funder
Center for Integrated Healthcare, U.S. Department of Veterans Affairs (VISN 2 Center for Integrated Healthcare)
HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献