Regional prolongation of ARI and altered restitution properties cause ventricular arrhythmia in heart failure

Author:

Watanabe Tetsu1,Yamaki Michiyasu2,Yamauchi Sou1,Minamihaba Osamu1,Miyashita Takehiko1,Kubota Isao1,Tomoike Hitonobu1

Affiliation:

1. First Department of Internal Medicine and

2. Division of Medical Informatics, Yamagata University School of Medicine, Yamagata 990-9585, Japan

Abstract

The mechanism of arrhythmogenicity in heart failure remains poorly understood. We examined the relationship between electrical abnormalities and ventricular arrhythmia by using experimental heart failure models. Sixty unipolar electrograms were recorded from the entire cardiac surface in control dogs ( n = 13) and pacing-induced heart failure dogs ( n = 16). In failing hearts, activation time (AT) was delayed at the apex, and AT dispersion increased in failing hearts. Activation-recovery intervals (ARI) were prolonged mainly at the apex and ARI dispersion was significantly augmented. The slope of the ARI restitution curve, interaction of diastolic interval, and ARI in failing hearts was significantly steeper than in control hearts. Ventricular fibrillation (VF) was easily induced by programmed stimulation in failing hearts, whereas no arrhythmia occurred in control hearts. Computer simulation studies could reproduce the experimental results. Altering the ARI restitution to the steep slope causes VF in a model heart. It is suggested that electrical remodeling, especially steepness of electrical restitution, may play a role in arrhythmogenicity in failing hearts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3