The effect of cardiac sympathetic denervation through bilateral stellate ganglionectomy on electrical properties of the heart

Author:

Xie Xueyi1,Visweswaran Ramjay1,Guzman Pilar A.2,Smith Rebecca M.1,Osborn John W.2,Tolkacheva Elena G.1

Affiliation:

1. Departments of 1Biomedical Engineering and

2. Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota

Abstract

The role of the cardiac sympathetic nerve activity in various cardiac diseases is typically evaluated using β-adrenergic receptor antagonists. However, these antagonists induce global denervation effects not only in the cardiovascular system, but also in the brain and kidney. The objective of this study was to detect the electrophysiological property changes due to 8 days of cardiac sympathetic denervation and investigate the possible mechanisms underlying these changes using a more cardiac-specific bilateral stellate ganglionectomy (SGX) rat model. High-resolution optical mapping using a voltage-sensitive dye was performed in isolated Langendorff-perfused sham and SGX hearts, which were paced at progressively reduced basic cycle lengths under several different conditions: control, pretreatment with isoproterenol, and administration of atenolol and esmolol. Several electrophysiological parameters were recorded during periodic pacing and ventricular fibrillation (VF). Our results demonstrate that cardiac sympathetic denervation by bilateral SGX shortens action potential duration (APD) and flattens the APD restitution curve, but does not significantly affect spatial dispersion of APD. We found that, although the vulnerability of sham and SGX hearts to VF is similar, the dynamics of VF are different. The maximum dominant frequency is higher, and the spatial distribution of VF is more complex in the SGX heart, resulting in different mechanisms of VF. We demonstrated that β1-adrenergic receptors are downregulated in the SGX compared with sham hearts. In addition, our data suggest that the mechanism of cardiac sympathetic denervation by SGX surgery is more similar to the administration of β-blocker esmolol than atenolol.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3