Wall stress of the cervical carotid artery in patients with carotid dissection: a case-control study

Author:

Callaghan Fraser M.1,Luechinger Roger2,Kurtcuoglu Vartan1,Sarikaya Hakan3,Poulikakos Dimos1,Baumgartner Ralf W.3

Affiliation:

1. Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich,

2. Institute for Biomedical Engineering, University and ETH Zurich, and

3. Department of Neurology, University Hospital Zurich, Zurich, Switzerland

Abstract

Spontaneous internal carotid artery (ICA) dissection (sICAD) results from an intimal tear located around the distal carotid sinus. The mechanisms causing the tear are unknown. This case-control study tested the hypotheses that head movements increase the wall stress in the cervical ICA and that the stress increase is greater in patients with sICAD than in controls. Five patients with unilateral, recanalized, left sICAD and five matched controls were investigated before and after maximal head rotation to the left and neck hyperextension after 45° head rotation to the left. The anatomy of the extracranial carotid arteries was assessed by magnetic resonance imaging and used to create finite element models of the right ICA. Wall stress increased after head movements. Increases above the 80th and 90th percentile were located at the intimal side of the artery wall from 7.4 mm below to 10 mm above the cranial edge of the carotid sinus, i.e., at the same location as histologically confirmed tears in patients with sICAD. Wall stress increase did not differ between patients and controls. The present findings suggest that wall stress increases at the intimal side of the artery wall surrounding the distal edge of the carotid bulb after head movements may be important for the development of carotid dissection. The lack of wall stress difference between the two groups indicates that the carotid arteries of patients with carotid dissection have either distinct functional or anatomical properties or endured unusually heavy wall stresses to initiate dissection.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3