Nitric oxide contributes to right coronary vasodilation during systemic hypoxia

Author:

Martinez Rodolfo R.,Setty Srinath,Zong Pu,Tune Johnathan D.,Downey H. Fred

Abstract

As arterial partial pressure of O2 (PaO2) is reduced during systemic hypoxia, right ventricular (RV) work and myocardial O2 consumption (MV̇o2) increase. Mechanisms responsible for maintaining RV O2 demand/supply balance during hypoxia have not been delineated. To address this problem, right coronary (RC) blood flow and RV O2 extraction were measured in nine conscious, instrumented dogs exposed to normobaric hypoxia. Catheters were implanted in the right ventricle for measuring pressure, in the ascending aorta for measuring arterial pressure and for sampling arterial blood, and in an RC vein. A flow transducer was placed around the RC artery. After recovery from surgery, dogs were exposed to hypoxia in a chamber ventilated with N2, and blood samples and hemodynamic data were collected as chamber O2 was reduced progressively to ∼8%. After control measurements were made, the chamber was opened and the dog was allowed to recover. Nω-nitro-l-arginine (l-NNA) was then administered (35 mg/kg, via RV catheter) to inhibit nitric oxide (NO) production, and the hypoxia protocol was repeated. RC blood flow increased during hypoxia due to coronary vasodilation, because RC conductance increased from 0.65 ± 0.05 to 1.32 ± 0.12 ml·min−1·100 g−1. l-NNA blunted the hypoxia-induced increase in RC conductance. RV O2 extraction remained constant at 64 ± 4% as PaO2 was decreased, but after l-NNA, extraction increased to 70 ± 3% during normoxia and then to 78 ± 3% during hypoxia. RV MV̇o2 increased during hypoxia, but after l-NNA, MV̇o2 was lower at any respective PaO2. The relationship between heart rate times RV systolic pressure (rate-pressure product) and RV MV̇o2 was not altered by l-NNA. To account for l-NNA-mediated decreases in RV MV̇o2, O2 demand/supply variables were plotted as functions of MV̇o2. Slope of the conductance-MV̇o2 relationship was depressed by l-NNA ( P = 0.03), whereas the slope of the extraction-MV̇o2 relationship increased ( P = 0.003). In summary, increases in RV MV̇o2 during hypoxia are met normally by increasing RC blood flow. When NO synthesis is blocked, the large RV O2 extraction reserve is mobilized to maintain RV O2 demand/supply balance. We conclude that NO contributes to RC vasodilation during systemic hypoxia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3