Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state

Author:

Shahbaz Atta U.1,Zhao Tieqiang1,Zhao Wenyuan1,Johnson Patti L.1,Ahokas Robert A.2,Bhattacharya Syamal K.1,Sun Yao1,Gerling Ivan C.3,Weber Karl T.1

Affiliation:

1. Division of Cardiovascular Diseases, Department of Medicine,

2. Department of Obstetrics and Gynecology,

3. Division of Endocrinology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee

Abstract

Acute hyperadrenergic stressor states are accompanied by cation dyshomeostasis, together with the release of cardiac troponins predictive of necrosis. The signal-transducer-effector pathway accounting for this pathophysiological scenario remains unclear. We hypothesized that a dyshomeostasis of extra- and intracellular Ca2+ and Zn2+ occurs in rats in response to isoproterenol (Isop) including excessive intracellular Ca2+ accumulation (EICA) and mitochondrial [Ca2+]m-induced oxidative stress. Contemporaneously, the selective translocation of Ca2+ and Zn2+ to tissues contributes to their fallen plasma levels. Rats received a single subcutaneous injection of Isop (1 mg/kg body wt). Other groups of rats received pretreatment for 10 days with either carvedilol (C), a β-adrenergic receptor antagonist with mitochondrial Ca2+ uniporter-inhibiting properties, or quercetin (Q), a flavonoid with mitochondrial-targeted antioxidant properties, before Isop. We monitored temporal responses in the following: [Ca2+] and [Zn2+] in plasma, left ventricular (LV) apex, equator and base, skeletal muscle, liver, spleen, and peripheral blood mononuclear cells (PBMC), indices of oxidative stress and antioxidant defenses, mitochondrial permeability transition pore (mPTP) opening, and myocardial fibrosis. We found ionized hypocalcemia and hypozincemia attributable to their tissue translocation and also a heterogeneous distribution of these cations among tissues with a preferential Ca2+ accumulation in the LV apex, muscle, and PBMC, whereas Zn2+ declined except in liver, where it increased corresponding with upregulation of metallothionein, a Zn2+-binding protein. EICA was associated with a simultaneous increase in tissue 8-isoprostane and increased [Ca2+]m accompanied by a rise in H2O2 generation, mPTP opening, and scarring, each of which were prevented by either C or Q. Thus excessive [Ca2+]m, coupled with the induction of oxidative stress and increased mPTP opening, suggests that this signal-transducer-effector pathway is responsible for Isop-induced cardiomyocyte necrosis at the LV apex.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3