Stimulatory effects of arachidonic acid on myosin ATPase activity and contraction of smooth muscle via myosin motor domain

Author:

Katayama Takeshi1,Watanabe Masaru2,Tanaka Hideyuki3,Hino Mizuki1,Miyakawa Takuya4,Ohki Takashi5,Ye Li-Hong16,Xie Ce1,Yoshiyama Shinji1,Nakamura Akio1,Ishikawa Ryoki1,Tanokura Masaru4,Oiwa Kazuhiro7,Kohama Kazuhiro18

Affiliation:

1. Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma;

2. Department of Physiology, Tokyo Medical University, Tokyo;

3. Department of Research Science, Gunma University School of Health Sciences, Gunma;

4. Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo;

5. Department of Physics, School of Science and Engineering, Waseda University, Tokyo;

6. Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China; and

7. Kansai Advanced Research Center, Kobe, Japan;

8. Department of Biological Sciences, Marshall University, Huntington, West Virginia

Abstract

We have been searching for a mechanism to induce smooth muscle contraction that is not associated with phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin (Nakamura A, Xie C, Zhang Y, Gao Y, Wang HH, Ye LH, Kishi H, Okagaki T, Yoshiyama S, Hayakawa K, Ishikawa R, Kohama K. Biochem Biophys Res Commun 369: 135–143, 2008). In this article, we report that arachidonic acid (AA) stimulates ATPase activity of unphosphorylated smooth muscle myosin with maximal stimulation (Rmax) of 6.84 ± 0.51 relative to stimulation by the vehicle and with a half-maximal effective concentration (EC50) of 50.3 ± 4.2 μM. In the presence of actin, Rmaxwas 1.72 ± 0.08 and EC50was 26.3 ± 2.3 μM. Our experiments with eicosanoids consisting of the AA cascade suggested that they neither stimulated nor inhibited the activity. Under conditions that did not allow RLC to be phosphorylated, AA stimulated contraction of smooth muscle tissue with an Rmaxof 1.45 ± 0.07 and an EC50of 27.0 ± 4.4 μM. In addition to the ATPase activities of the myosin, AA stimulated those of heavy meromyosin, subfragment 1 (S1), S1 from which the RLC was removed, and a recombinant heavy chain consisting of the myosin head. The stimulatory effects of AA on these preparations were about twofold. The site of AA action was indicated to be the step-releasing inorganic phosphate (Pi) from the reaction intermediate of the myosin-ADP-Picomplex. The enhancement of Pirelease by AA was supported by computer simulation indicating that AA docked in the actin-binding cleft of the myosin motor domain. The stimulatory effect of AA was detectable with both unphosphorylated myosin and the myosin in which RLC was fully phosphorylated. The AA effect on both myosin forms was suggested to cause excess contraction such as vasospasm.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3