Contributions of endothelium-derived relaxing factors to control of hindlimb blood flow in the mouse in vivo

Author:

Fitzgerald Sharyn M.,Bashari Homaira,Cox Jessica A.,Parkington Helena C.,Evans Roger G.

Abstract

We determined the contributions of various endothelium-derived relaxing factors to control of basal vascular tone and endothelium-dependent vasodilation in the mouse hindlimb in vivo. Under anesthesia, catheters were placed in a carotid artery, jugular vein, and femoral artery (for local hindlimb circulation injections). Hindlimb blood flow (HBF) was measured by transit-time ultrasound flowmetry. Nω-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg plus 10 mg·kg−1·h−1), to block nitric oxide (NO) production, altered basal hemodynamics, increasing mean arterial pressure (30 ± 3%) and reducing HBF (−30 ± 12%). Basal hemodynamics were not significantly altered by indomethacin (10 mg·kg−1·h−1), charybdotoxin (ChTx, 3 × 10−8 mol/l), apamin (2.5 × 10−7 mol/l), or ChTx plus apamin (to block endothelium-derived hyperpolarizing factor; EDHF). Hyperemic responses to local injection of acetylcholine (2.4 μg/kg) were reproducible in vehicle-treated mice and were not significantly attenuated by l-NAME alone, indomethacin alone, l-NAME plus indomethacin with or without co-infusion of diethlyamine NONOate to restore resting NO levels, ChTx alone, or apamin alone. Hyperemic responses evoked by acetylcholine were reduced by 29 ± 11% after combined treatment with apamin plus charybdotoxin, and the remainder was virtually abolished by additional treatment with l-NAME but not indomethacin. None of the treatments altered the hyperemic response to sodium nitroprusside (5 μg/kg). We conclude that endothelium-dependent vasodilation in the mouse hindlimb in vivo is mediated by both NO and EDHF. EDHF can fully compensate for the loss of NO, but this cannot be explained by tonic inhibition of EDHF by NO. Control of basal vasodilator tone in the mouse hindlimb is dominated by NO.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3