Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices

Author:

Lake Douglas E.1,Moorman J. Randall1

Affiliation:

1. Cardiovascular Division, Department of Internal Medicine, and Cardiovascular Research Center, University of Virginia Health System, Charlottesville, Virginia

Abstract

Entropy estimation is useful but difficult in short time series. For example, automated detection of atrial fibrillation (AF) in very short heart beat interval time series would be useful in patients with cardiac implantable electronic devices that record only from the ventricle. Such devices require efficient algorithms, and the clinical situation demands accuracy. Toward these ends, we optimized the sample entropy measure, which reports the probability that short templates will match with others within the series. We developed general methods for the rational selection of the template length m and the tolerance matching r. The major innovation was to allow r to vary so that sufficient matches are found for confident entropy estimation, with conversion of the final probability to a density by dividing by the matching region volume, 2 r m. The optimized sample entropy estimate and the mean heart beat interval each contributed to accurate detection of AF in as few as 12 heartbeats. The final algorithm, called the coefficient of sample entropy (COSEn), was developed using the canonical MIT-BIH database and validated in a new and much larger set of consecutive Holter monitor recordings from the University of Virginia. In patients over the age of 40 yr old, COSEn has high degrees of accuracy in distinguishing AF from normal sinus rhythm in 12-beat calculations performed hourly. The most common errors are atrial or ventricular ectopy, which increase entropy despite sinus rhythm, and atrial flutter, which can have low or high entropy states depending on dynamics of atrioventricular conduction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 239 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3