Affiliation:
1. Institute of Cardiovascular Science and Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China; and
2. Montreal Heart Institute, Montreal, Quebec, Canada HIT IC8
Abstract
Heart failure (HF) produces important alterations in currents underlying cardiac repolarization, but the transmural distribution of such changes is unknown. We therefore recorded action potentials and ionic currents in cells isolated from the endocardium, midmyocardium, and epicardium of the left ventricle from dogs with and without tachypacing-induced HF. HF greatly increased action potential duration (APD) but attenuated APD heterogeneity in the three regions. Early afterdepolarizations (EADs) were observed in all cell types of failing hearts but not in controls. Inward rectifier K+ current ( I K1) was homogeneously reduced by ∼41% (at −60 mV) in the three cell types. Transient outward K+ current ( I to1) was decreased by 43–45% at +30 mV, and the slow component of the delayed rectifier K+ current ( I Ks) was significantly downregulated by 57%, 49%, and 58%, respectively, in epicardial, midmyocardial, and endocardial cells, whereas the rapid component of the delayed rectifier K+ current was not altered. The results indicate that HF remodels electrophysiology in all layers of the left ventricle, and the downregulation of I K1, I to1, and I Ks increases APD and favors occurrence of EADs.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
212 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献