Effect of stent coating alone on in vitro vascular smooth muscle cell proliferation and apoptosis

Author:

Curcio Antonio,Torella Daniele,Cuda Giovanni,Coppola Carmela,Faniello Maria Concetta,Achille Francesco,Russo Viviana G.,Chiariello Massimo,Indolfi Ciro

Abstract

Synthetic polymers, like methacrylate (MA) compounds, have been clinically introduced as inert coatings to locally deliver drugs that inhibit restenosis after stent. The aim of the present study was to evaluate the effects of MA coating alone on vascular smooth muscle cell (VSMC) growth in vitro. Stainless steel stents were coated with MA at the following doses: 0.3, 1.5, and 3 ml. Uncoated/bare metal stents were used as controls. VSMCs were cultured in dishes, and a MA-coated stent or an uncoated bare metal stent was gently added to each well. VSMC proliferation was assessed by bromodeoxyuridine (BrdU) incorporation. Apoptosis was analyzed by three distinct approaches: 1) annexin V/propidium iodide fluorescence detection; 2) DNA laddering; and 3) caspase-3 activation and PARP cleavage. MA-coated stents induced a significant decrease of BrdU incorporation compared with uncoated stents at both the low and high concentrations. In VSMCs incubated with MA-coated stents, annexin V/propidium iodide fluorescence detection showed a significant increase in apoptotic cells, which was corroborated by the typical DNA laddering. Apoptosis of VSMCs after incubation with MA-coated stents was characterized by caspase-3 activation and PARP cleavage. The MA-coated stent induced VSMC growth arrest by inducing apoptosis in a dose-dependent manner. Thus MA is not an inert platform for eluting drugs because it is biologically active per se. This effect should be taken in account when evaluating an association of this coating with antiproliferative agents for in-stent restenosis prevention.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3