Ensemble machine learning model identifies patients with HFpEF from matrix-related plasma biomarkers

Author:

Ward Michael1,Yeganegi Amirreza1ORCID,Baicu Catalin F.2,Bradshaw Amy D.2,Spinale Francis G.34ORCID,Zile Michael R.2,Richardson William J.1ORCID

Affiliation:

1. Department of Bioengineering, Clemson University, Clemson, South Carolina

2. Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina

3. School of Medicine, University of South Carolina, Columbia, South Carolina

4. Columbia Veterans Affairs Health Care System, Columbia, South Carolina

Abstract

Machine learning algorithms correctly classified patients with heart failure with preserved ejection fraction with over 90% area under receiver-operating-characteristic curves. Classifications using multidomain features (demographics and circulating biomarkers and echo-based ventricle metrics) proved more accurate than previous studies using single-domain features alone. Excitingly, HFpEF diagnoses were generally accurate even without echo-based measurements, demonstrating that such algorithms could provide an early screening tool using blood-based measurements before sophisticated imaging.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3