Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose

Author:

Mellor Kimberley M.12,Varma Upasna1,Stapleton David I.1,Delbridge Lea M. D.1

Affiliation:

1. Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; and

2. Department of Physiology, University of Auckland, Auckland, New Zealand

Abstract

Disturbed systemic glycemic and insulinemic status elicits cardiomyocyte metabolic stress and altered glucose handling. In diabetes, pathological myocardial glycogen accumulation occurs. Recently, evidence of a specific myocardial autophagic degradation pathway for glycogen (“glycophagy”) has been reported, differentiated from the more well-characterized protein “macrophagy” pathway. The goal of this study was to identify potential mechanisms involved in cardiac glycogen accumulation, glycophagy, and macrophagy regulation using cultured neonatal rat ventricular myocytes (NRVMs). In NRVMs, insulin-induced Akt phosphorylation was evident with 5 mM-glucose conditions (∼2.3-fold increased). Under high-glucose (30 mM) conditions, insulin-augmented phosphorylation was not observed. Accumulation of glycogen was observed in response to insulin only in high-glucose conditions (∼2-fold increase). Increased expression of the glycophagy marker starch-binding domain-containing protein-1 (STBD1, 25% increase) was observed under high-glucose and insulin conditions. Expression levels of the macrophagy markers p62 and light chain protein 3BII:I were not increased by insulin at either glucose level. Preliminary results from hearts of streptozotocin-treated diabetic rats are supportive of the findings obtained in NRVMs, suggesting diabetes induced elevated expression of STBD1 and of an additional glycophagy marker GABA(A) receptor-associated protein-like 1. Confocal microscopy demonstrated that light chain protein 3B and STBD1 immunomarkers were not colocalized in NRVMs. These findings provide the first evidence that cardiomyocyte glycophagy induction occurs under the influence of insulin and is responsive to extracellular high glucose. This study suggests that the regulation of glycogen content and glycophagy induction in the cardiomyocyte may be linked, and it is speculated that glycogen pathology in diabetic cardiomyopathy has glycophagic involvement.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3