The complex distribution of arterial system mechanical properties, pulsatile hemodynamics, and vascular stresses emerges from three simple adaptive rules

Author:

Nguyen Phuc H.1,Coquis-Knezek Sarah F.1,Mohiuddin Mohammad W.1,Tuzun Egemen2,Quick Christopher M.1

Affiliation:

1. Michael E. DeBakey Institute, Texas A&M University, College Station, Texas; and

2. Texas A&M Institute for Preclinical Studies, College Station, Texas

Abstract

Arterial mechanical properties, pulsatile hemodynamic variables, and mechanical vascular stresses vary significantly throughout the systemic arterial system. Although the fundamental principles governing pulsatile hemodynamics in elastic arteries are widely accepted, a set of rules governing stress-induced adaptation of mechanical properties can only be indirectly inferred from experimental studies. Previously reported mathematical models have assumed mechanical properties adapt to achieve an assumed target stress “set point.” Simultaneous prediction of the mechanical properties, hemodynamics, and stresses, however, requires that equilibrium stresses are not assumed a priori. Therefore, the purpose of this work was to use a “balance point” approach to identify the simplest set of universal adaptation rules that simultaneously predict observed mechanical properties, hemodynamics, and stresses throughout the human systemic arterial system. First, we employed a classical systemic arterial system model with 121 arterial segments and removed all parameter values except vessel lengths and peripheral resistances. We then assumed vessel radii increase with endothelial shear stress, wall thicknesses increase with circumferential wall stress, and material stiffnesses decrease with circumferential wall stress. Parameters characterizing adaptive responses were assumed to be identical in all arterial segments. Iteratively predicting local mechanical properties, hemodynamics, and stresses reproduced five trends observed when traversing away from the aortic root towards the periphery: decrease in lumen radii, wall thicknesses, and pulsatile flows and increase in wall stiffnesses and pulsatile pressures. The extraordinary complexity of the systemic arterial system can thus arise from independent adaptation of vessels to local stresses characterized by three simple adaptive rules.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3