Inhaled carbon monoxide reduces leukocytosis in a murine model of sickle cell disease

Author:

Beckman Joan D.12,Belcher John D.12,Vineyard Julie V.12,Chen Chunsheng12,Nguyen Julia12,Nwaneri M. Osita12,O'Sullivan M. Gerard3,Gulbahce Evin4,Hebbel Robert P.12,Vercellotti Gregory M.12

Affiliation:

1. Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis;

2. Vascular Biology Center, University of Minnesota Medical School, Minneapolis;

3. Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, Saint Paul; and

4. Division of Surgical Pathology, Department of Laboratory Medicine/Pathology, University of Minnesota Medical School, Minneapolis, Minnesota

Abstract

Carbon monoxide (CO) has anti-inflammatory properties. We previously reported that acute treatments with inhaled CO inhibit vascular inflammation and hypoxia-induced vasoocclusion in sickle cell disease mouse models. Therefore, we hypothesized that chronic CO inhalation would decrease vascular inflammation and organ pathology in a sickle cell disease mouse model. The treatment of sickle cell disease mice with 25 or 250 parts/million inhaled CO for 1 h/day, 3 days/wk for 8–10 wk significantly decreased the total mean white blood cell, neutrophil, and lymphocyte counts in peripheral blood. Eight weeks of 250 parts/million CO treatments reduced staining for myeloid and lymphoid markers in the bone marrow of sickle mice. Bone marrow from treated sickle mice exhibited a significant decrease in colony-forming unit granulocyte-macrophage during colony-forming cell assays. Anti-inflammatory signaling pathways phospho-Akt and phospho-p38 MAPK were markedly increased in CO-treated sickle livers. Importantly, CO-treated sickle mice had a significant reduction in liver parenchymal necrosis, reflecting the anti-inflammatory benefits of CO. We conclude that inhaled CO may be a beneficial anti-inflammatory therapy for sickle cell disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3