The β-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium

Author:

Monasky Michelle M.1,Taglieri Domenico M.1,Henze Marcus1,Warren Chad M.1,Utter Megan S.1,Soergel David G.2,Violin Jonathan D.2,Solaro R. John1

Affiliation:

1. Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago, Illinois; and

2. Trevena Incorporated, King of Prussia, Pennsylvania

Abstract

In the present study, we compared the cardioprotective effects of TRV120023, a novel angiotensin II (ANG II) type 1 receptor (AT1R) ligand, which blocks G protein coupling but stimulates β-arrestin signaling, against treatment with losartan, a conventional AT1R blocker in the treatment of cardiac hypertrophy and regulation of myofilament activity and phosphorylation. Rats were subjected to 3 wk of treatment with saline, ANG II, ANG II + losartan, ANG II + TRV120023, or TRV120023 alone. ANG II induced increased left ventricular mass compared with rats that received ANG II + losartan or ANG II + TRV120023. Compared with saline controls, ANG II induced a significant increase in pCa50 and maximum Ca2+-activated myofilament tension but reduced the Hill coefficient ( nH). TRV120023 increased maximum tension and pCa50, although to lesser extent than ANG II. In contrast to ANG II, TRV120023 increased nH. Losartan blocked the effects of ANG II on pCa50 and nH and reduced maximum tension below that of saline controls. ANG II + TRV120023 showed responses similar to those of TRV120023 alone; compared with ANG II + losartan, ANG II + TRV120023 preserved maximum tension and increased both pCa50 and cooperativity. Tropomyosin phosphorylation was lower in myofilaments from saline-treated hearts compared with the other groups. Phosphorylation of cardiac troponin I was significantly reduced in ANG II + TRV120023 and TRV120023 groups versus saline controls, and myosin-binding protein C phosphorylation at Ser282 was unaffected by ANG II or losartan but significantly reduced with TRV120023 treatment compared with all other groups. Our data indicate that TRV120023-related promotion of β-arrestin signaling and enhanced contractility involves a mechanism promoting the myofilament response to Ca2+ via altered protein phosphorylation. Selective activation of β-arrestin-dependent pathways may provide advantages over conventional AT1R blockers.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3