Author:
Liu Yun-He,Carretero Oscar A.,Cingolani Oscar H.,Liao Tang-Dong,Sun Ying,Xu Jiang,Li Lisa Y.,Pagano Patrick J.,Yang James J.,Yang Xiao-Ping
Abstract
Using inducible nitric oxide (NO) synthase (iNOS) knockout mice (iNOS−/−), we tested the hypotheses that 1) lack of iNOS attenuates cardiac remodeling and dysfunction and improves cardiac reserve postmyocardial infarction (MI), an effect that is partially mediated by reduction of oxidative stress due to reduced interaction between NO and reactive oxygen species (ROS); and 2) the cardioprotection afforded by iNOS deletion is eliminated by Nω-nitro-l-arginine methyl ester (l-NAME) due to inhibition of endothelial NOS (eNOS) and neuronal NOS (nNOS). MI was induced by ligating the left anterior descending coronary artery. Male iNOS−/− mice and wild-type controls (WT, C57BL/6J) were divided into sham MI, MI+vehicle, and MI+l-NAME (100 mg·kg−1·day−1 in drinking water for 8 wk). Cardiac function was evaluated by echocardiography. Left ventricular (LV) maximum rate of rise of ventricular pressure divided by pressure at the moment such maximum occurs (dP/d t/instant pressure) in response to isoproterenol (100 ng·kg−1·min−1 iv) was measured with a Millar catheter. Collagen deposition, myocyte cross-sectional area, and expression of nitrotyrosine and 4-hydroxy-2-nonenal (4-HNE), markers for ROS, were determined by histopathological and immunohistochemical staining. We found that the MI-induced increase in LV chamber dimension and the decrease in ejection fraction, an index of systolic function, were less severe in iNOS−/− compared with WT mice. l-NAME worsened LV remodeling and dysfunction further, and these detrimental effects were also attenuated in iNOS−/− mice, associated with better preservation of cardiac function. Lack of iNOS also reduced nitrotyrosine and 4-HNE expression after MI, indicating reduced oxidative stress. We conclude that iNOS does not seem to be a pathological mediator of heart failure; however, the lack of iNOS improves cardiac reserve post-MI, particularly when constitutive NOS isoforms are blocked. Decreased oxidative stress and other adaptive mechanisms independent of NOS may be partially responsible for such an effect, which needs to be studied further.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Reference42 articles.
1. Involvement of iNOS in postischemic heart dysfunction of stroke-prone spontaneously hypertensive rats
2. Balligand JL, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M, Taha Z, Lowenstein CJ, Davidoff AJ, Kelly RA, Smith TW, and Michel T. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes: characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 269: 27580–27588, 1994.
3. Role of Myocardial Neuronal Nitric Oxide Synthase–Derived Nitric Oxide in β-Adrenergic Hyporesponsiveness After Myocardial Infarction–Induced Heart Failure in Rat
4. Decreased Catecholamine Sensitivity and β-Adrenergic-Receptor Density in Failing Human Hearts
5. Increased superoxide production causes coronary endothelial dysfunction and depressed oxygen consumption in the failing heart
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献