Manipulation of central blood volume and implications for respiratory control function

Author:

Miyamoto Tadayoshi12,Bailey Damian Miles3,Nakahara Hidehiro1,Ueda Shinya1,Inagaki Masashi2,Ogoh Shigehiko4

Affiliation:

1. Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka City, Osaka, Japan;

2. Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita City, Osaka, Japan;

3. Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom; and

4. Department of Biomedical Engineering, Toyo University, Kawagoe City, Saitama, Japan

Abstract

The respiratory operating point (ventilatory or arterial Pco2 response) is determined by the intersection point between the controller and plant subsystem elements within the respiratory control system. However, to what extent changes in central blood volume (CBV) influence these two elements and the corresponding implications for the respiratory operating point remain unclear. To examine this, 17 apparently healthy male participants were exposed to water immersion (WI) or lower body negative pressure (LBNP) challenges to manipulate CBV and determine the corresponding changes. The respiratory controller was characterized by determining the linear relationship between end-tidal Pco2 (PetCO2) and minute ventilation (V̇e) [V̇e = S × (PetCO2 − B)], whereas the plant was determined by the hyperbolic relationship between V̇e and PetCO2 (PetCO2 = A/V̇e + C). Changes in V̇e at the operating point were not observed under either WI or LBNP conditions despite altered PetCO2 ( P < 0.01), indicating a moving respiratory operating point. An increase (WI) and a decrease (LBNP) in CBV were shown to reset the controller element (PetCO2 intercept B) rightward and leftward, respectively ( P < 0.05), without any change in S, whereas the plant curve remained unaltered at the operating point. Collectively, these findings indicate that modification of the controller element rather than the plant element is the major factor that contributes toward an alteration of the respiratory operating point during CBV shifts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3