Regulation of contractility by Hsp27 and Hic-5 in rat mesenteric small arteries

Author:

Srinivasan R.,Forman S.,Quinlan R. A.,Ohanian J.,Ohanian V.

Abstract

The regulation of small artery contractility by vasoconstrictors is important for vascular function, and actin cytoskeleton remodeling is required for contraction. p38 MAPK and tyrosine kinases are implicated in actin polymerization and contraction through heat shock protein 27 (Hsp27) and the cytoskeletal protein paxillin, respectively. We evaluated the roles of downstream targets of p38 MAPK and tyrosine kinases in cytoskeletal reorganization and contraction and whether the two signaling pathways regulate contraction independent of each other. We identified the expression of the paxillin homologue hydrogen peroxide-inducible clone-5 (Hic-5) and showed its activation by norepinephrine (NE) in a Src-dependent manner. Furthermore, we demonstrated a NE-induced interaction of proline-rich tyrosine kinase-2 (PYK2) but not Src or p125 focal adhesion kinase with Hic-5. This interaction was Src dependent, suggesting that Hic-5 was a substrate for PYK2 downstream from Src. The activation of Hic-5 induced its relocalization to the cytosol. The parallel activation of Hsp27 by NE was p38 MAPK dependent and led to its dissociation from actin filaments and translocation from membrane to cytosol and increased actin polymerization. Both Hsp27 and Hic-5 activation resulted in their association within the same time frame as NE-induced contraction, and the inhibition of either p38 MAPK or Src inhibited the interaction between Hsp27 and Hic-5 and the contractile response. Furthermore, combined p38 MAPK and Src inhibition had no greater effect on contraction than individual inhibition, suggesting that the two pathways act through a common mechanism. These data show that NE-induced activation and the association of Hsp27 and Hic-5 are required for the reorganization of the actin cytoskeleton and force development in small arteries.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3